Nelco Advanced Circuitry Materials # Nelco® N4000-13 Nelco® N4000-13 SI® ## **High-Speed Multifunctional Epoxy Laminate & Prepreg** The Nelco® N4000-13 series is an enhanced epoxy resin system engineered to provide both outstanding thermal and high signal speed / low signal loss properties. N4000-13 SI® is excellent for applications that require optimum signal integrity and precise impedance control, while maintaining high reliability through CAF² and thermal resistance. #### **Key Features** #### Lead-Free Assembly Compatible - Ideally suited for assemblies with a maximum reflow temperature of 245°C¹ - Nelco N4000-13 has shown acceptable results in reflow conditions up to 260°C¹ depending on the PCB design and manufacturing processing ## Tg >210°C, outstanding thermal, electrical and signal loss properties - Excellent thickness control for tight tolerance impedance applications - Low Df and Dk allows for low signal distortion and faster signal propogation required by high frequency (1 10 GHz) and high reliability applications #### CAF² Resistant - The low Z-CTE and proven CAF resistance² provide long-term reliability for both RF and digital applications #### Signal Integrity and Buried CapacitanceTM Options - When used, SI glass provides enhanced electrical performance for even the most demanding applications - Approved ZBC-2000* substrate available for thinner, more reliable assemblies and increased board densities #### High-Tg FR-4 processing - Processes similar to traditional high Tg FR-4 materials - 90 min press at 193°C and 275-350 psi #### Available in a variety of constructions - Vacuum laminated - Available in a wide variety of constructions, copper weights and glass styles including standard copper, double treat and RTFOIL[®] laminate. - Meets UL 94V-0 and IPC-4101/29 specifications - All Nelco® materials are RoHS compliant. ### **Applications** - Fine-Line Multilayers - Backplanes - Surface-Mount Multilayers - BGA Multilayers - MCM-Ls - CSP Attachment - Wireless Communication Infrastructure - High Speed Services - High Speed Storage Networks - Internet Switching / Routing Systems ### **Global Availability** Nelco, California +1.714.879.4293 Nelco, New York +1.845.567.6200 Neltec, Arizona +1.480.967.5600 Nelco, Asia Pacific +65.6861.7117 Neltec Europe SAS +33.380.10.10.00 Neltec, SA +33.562.98.52.90 www.parkelectro.com info@parkelectro.com Park's UL file number: E36295 # **Nelco N4000-13 and N4000-13 SI®** **High-Speed Multifunctional Epoxy Laminate & Prepreg** | Mechanical Properties | N4000-13 | -13 SI | U.S. Units | N4000-13 | -13 SI | Metric | Test Method | |---|-----------------|-----------------|-----------------------|---------------------|---------------------|-------------------|--| | Peel Strength - 1 oz. (35 micron) Cu | | | | | | | | | After Solder Float | 7.5 | 7.5 | lb/inch | 1.31 | 1.31 | N/mm | IPC-TM-650.2.4.8 | | At Elevated Temperature | 8.1 | 8.1 | lb/inch | 1.42 | 1.42 | N/mm | IPC-TM-650.2.4.8.2a | | After Exposure to Process Solutions | 9.0 | 9.0 | lb/inch | 1.58 | 1.58 | N/mm | IPC-TM-650.2.4.8 | | X/Y CTE [-40°C to +125°C] | 10 - 14 | 9 - 13 | ppm/°C | 10 - 14 | 9 - 13 | ppm/°C | IPC-TM-650.2.4.41 | | Z Axis CTE Alpha 1 [50°C to Tg] | 70 | 70 | ppm/°C | 70 | 70 | ppm/°C | IPC-TM-650.2.4.41 | | Z Axis CTE Alpha 2 [Tg to 260°C] | 280 | 280 | ppm/°C | 280 | 280 | ppm/°C | IPC-TM-650.2.4.41 | | Z Axis Expansion [50°C to 260°C] | 3.5 | 3.5 | % | 3.5 | 3.5 | % | IPC-TM-650.2.4.41 | | Young's Modulus (X/Y) | 4.2/3.3 | 2.4/2.3 | psi x 10 ⁶ | 28.5/22.4 | 16.5/15.9 | GN/m ² | ASTM D3039 | | Poisson's Ratios (X/Y) | 0.13/0.11 | 0.18/0.17 | | 0.13/0.11 | 0.18/0.17 | | ASTM D3039 | | Thermal Conductivity | 0.350 | 0.294 | W/mK | 0.350 | 0.294 | W/mK | ASTM E1461 | | Specific Heat | 1.20 | 1.30 | J/gK | 1.20 | 1.30 | J/gK | ASTM E1461 | | Electrical Properties | | | | | | | | | Dielectric Constant (50% resin content) | | | | | | | | | @ 1 GHz (RF Impedance) | 3.7 | 3.4 | | 3.7 | 3.4 | | IPC-TM-650.2.5.5.9 | | @ 2.5 GHz (Split Post Cavity) | 3.7 | 3.2 | | 3.7 | 3.2 | | | | @ 10 GHz (Stripline) | 3.6 | 3.2 | | 3.6 | 3.2 | | IPC-TM-650.2.5.5.5 | | @ 10 GHz (Split Post Cavity) | 3.7 | 3.3 | | 3.7 | 3.3 | | | | Dissipation Factor (50% resin content) | " | 0.0 | | | 0.0 | | | | @ 2.5 GHz (Split Post Cavity) | 0.009 | 0.008 | | 0.009 | 0.008 | | | | @ 10 GHz (Stripline) | 0.009 | 0.008 | | 0.009 | 0.008 | | IPC-TM-650.2.5.5.5 | | @ 10 GHz (Split Post Cavity) | 0.008 | 0.007 | | 0.008 | 0.007 | | | | Volume Resistivity | | | | | | | | | C - 96/35/90 | 10 ⁸ | 10 ⁸ | Mµ - cm | 10 ⁸ | 10 ⁸ | Mµ - cm | IPC-TM-650.2.5.17.1 | | E - 24/125 | 10 ⁷ | 10 ⁸ | Mµ - cm | 10 ⁷ | 10 ⁸ | Mµ - cm | IPC-TM-650.2.5.17.1 | | Surface Resistivity | | | | | | | | | C - 96/35/90 | 10 ⁷ | 10 ⁷ | Mμ | 10 ⁷ | 10 ⁷ | Mμ | IPC-TM-650.2.5.17.1 | | E - 24/125 | 10 ⁷ | 10 ⁷ | Mμ | 10 ⁷ | 10 ⁷ | Mμ | IPC-TM-650.2.5.17.1 | | Electric Strength | 1200 | 1000 | V/mil | 4.7x10 ⁴ | 3.9x10 ⁴ | V/mm | IPC-TM-650.2.5.6.2 | | Dielectric Breakdown | >50 | >50 | kV | >50 | >50 | kV | IPC-TM-650.2.5.6 | | Arc Resistance | 123 | 123 | seconds | 123 | 123 | seconds | IPC-TM-650.2.5.1 | | Thermal Properties | | | | | | | | | Glass Transition Temperature (Tg) | | | | | | | | | DSC (°C) | 210 | 210 | °C | 210 | 210 | °C | IPC-TM-650.2.4.25c | | TMA (°C) | 200 | 200 | °C | 200 | 200 | °C | IPC-TM-650.2.4.24c | | , , | 240 | 240 | °C | 240 | | °C | | | DMA (°C) (Tan d Peak) | 350 | | °C | | 240 | °C | IPC-TM-650.2.4.24.3
IPC-TM-650.2.4.24.6 | | Degradation Temp (TGA) (5% wt. loss) | 330 | 350 | U | 350 | 350 | C | | | Pressure Cooker-60 min then solder dip | Dana | Daga | | Daga | Daga | | IPC-TM-650.2.6.16 | | @288°C until failure (max 10 min.) | Pass | Pass | | Pass | Pass | | (modified) | | T260 | 30+ | 30+ | minutes | 30+ | 30+ | minutes | IPC-TM-650.2.4.24.1 | | T288 | 10+ | 10+ | minutes | 10+ | 10+ | minutes | IPC-TM-650.2.4.24.1 | | Chemical / Physical Properties | | | | | | | | | Moisture Absorption | 0.1 | 0.1 | wt. % | 0.1 | 0.1 | wt. % | IPC-TM-650.2.6.2.1 | | Methylene Chloride Resistance | 0.7 | 0.7 | % wt. chg. | 0.7 | 0.7 | % wt. chg. | IPC-TM-650.2.3.4.3 | | Density [50% resin content] | 1.91 | 1.79 | g/cm³ | 1.91 | 1.79 | g/cm³ | Internal Method | Park Electrochemical Corp. is a global advanced materials company which develops and manufactures high-technology digital and RF/microwave printed circuit materials and advanced composite materials. The company operates under the Nelco®, Nelcote® and Nova™ names. All test data provided are typical values and not intended to be specification values. For review of critical specification tolerances, please contact a Nelco representative directly. Nelco reserves the right to change these typical values as a natural process of refining our testing equipment and techniques. Nelco reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Nelco does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights nor the rights of others. This disclaimer of warranty is in lieu of all warranties whether expressed, implied or statutory, including implied warranties of merchantability or fitness for a particular purpose. Nelco®, Neltec®, Nova™, RTFoil®, SI®, LD® and EF® are trademarks of Park Electrochemical Corp. BC®, ZBC-2000® and Buried Capacitance™ are Trademarks of the Sanmina-SCI Corporation. ¹Refer to the N4000-13 Best Practices document and Contract Manufacturing Q&A for PCB processing recommendations. Visit www.parkelectro.com for more information.²CAF resistance has been established to greater than 500 hours using a specific OEM coupon design and test procedure. Visit www.parkelectro.com for more information.